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Abstract 

Background  The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. 
Ceftazidime–avibactam (CAZ–AVI) has been identified as a potential treatment option for complicated infections.

Objectives  This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ–AVI 
comprehensively.

Methods  Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses 
were conducted using STATA software (version 20.0).

Results  CAZ–AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2–29.7) for non-
fermentative gram-negative bacilli and 6.1% (95% CI 4.9–7.4) for Enterobacterales. The CAZ–AVI resistance proportion 
significantly increased from 5.6% (95% CI 4.1–7.6) of 221,278 GNB isolates in 2015–2020 to 13.2% (95% CI 11.4–15.2) 
of 285,978 GNB isolates in 2021–2024. Regionally, CAZ–AVI resistance was highest in Asia 19.3% (95% CI 15.7–24.23.4), 
followed by Africa 13.6% (95% CI 5.6–29.2), Europe 11% (95% CI 7.8–15.2), South America 6.1% (95% CI 3.2–11.5) 
and North America 5.3% (95% CI 4.2–6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates 
exhibited the highest resistance proportions (37.1%, 95% CI 14–68 and 32.1%, 95% CI 18.5–49.6), respectively), fol-
lowed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6–29.3) and (13%, 95% CI 9.6, 17.3)].

Conclusion  A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ–AVI, indicat-
ing its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concern-
ing and warrant continuous monitoring to maintain CAZ–AVI’s effectiveness against GNB infections.
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Introduction
Antimicrobial resistance in Gram-negative bacteria 
(GNB) is a significant and urgent global public health 
concern requiring immediate attention [1, 2]. Tradi-
tionally, β-lactams and carbapenems have been reli-
able treatment choices for infections caused by GNB, 
providing consistent and effective therapeutic options 
against these pathogens [3]. Unfortunately, the exten-
sive usage of β-lactams and carbapenems has resulted 
in a concerning surge in antimicrobial resistance, com-
promising their efficacy against GNB and necessitat-
ing alternative therapeutic approaches [4]. The primary 
factor contributing to the development of resistance in 
GNB is often the production of β-lactamases, enzymes 
produced by bacteria that render β-lactam antibiotics 
ineffective [5, 6]. Carbapenemase-producing GNB con-
tributes significantly to increased mortality worldwide 
by rendering carbapenem antibiotics ineffective, thereby 
limiting treatment options and worsening health out-
comes [7]. β-lactam/β-lactamase inhibitor combination 
therapy effectively treats GNB infections, including those 
resistant to other antibiotics, by countering bacterial 
resistance mechanisms. Examples include ceftazidime–
avibactam (CAZ–AVI) and meropenem-vaborbactam 
[4, 8]. CAZ–AVI gained approval from the US Food and 
Drug Administration (FDA) in 2015 and the European 
Medicines Agency (EMA) in 2016. This combination 
therapy effectively treats complicated infections caused 
by GNB, including those resistant to other antibiot-
ics. The FDA initially approved CAZ–AVI for treating 
complicated urinary tract infections and complicated 
intra-abdominal infections in adults. At the same time, 
subsequent approvals have expanded its use to hospital-
acquired bacterial pneumonia and ventilator-associated 
bacterial pneumonia [3, 7]. CAZ–AVI demonstrates effi-
cacy against various GNBs such as Escherichia coli, Kleb-
siella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, 
Enterobacter cloacae, Citrobacter freundii complex, Ser-
ratia marcescens, and Haemophilus influenzae. Its broad-
spectrum activity makes it a valuable treatment option 
for multidrug-resistant infections involving these patho-
gens [9]. CAZ–AVI effectively treats infections caused 
by drug-resistant GNB, including ESBL, AmpC, KPC, 
OXA-48-producing Enterobacterales, and MDR, XDR, 
ceftazidime-non-susceptible, and carbapenem-resistant 
P. aeruginosa strains. Its broad-spectrum activity results 
from the synergistic effect of ceftazidime and avibac-
tam, which targets critical bacterial resistance mecha-
nisms [7, 10, 11]. CAZ–AVI is the preferred treatment for 
complicated intra-abdominal, urinary tract, and hospi-
tal-acquired pneumonia due to its efficacy against drug-
resistant GNB.

Clinical trials support this recommendation, and local 
susceptibility patterns should be considered during use 
[2, 3]. β-lactamase-mutants may compromise current 
inhibitors’ efficacy, necessitating robust surveillance, 
responsible antibiotic use, and investment in novel treat-
ments [7]. CAZ–AVI has a favorable pharmacologi-
cal profile and shows potential as an empirical therapy 
option for severe GNB infections, as supported by sys-
tematic reviews and real-world experiences. Its efficacy 
against carbapenem-resistant Enterobacterales and P. 
aeruginosa further highlights its importance in manag-
ing multi-drug resistant infections [9, 12]. CAZ–AVI is 
effective against carbapenem-resistant Enterobacterales 
and P. aeruginosa, as supported by systematic reviews, 
meta-analyses, and clinical trials. Its efficacy in managing 
multi-drug resistant infections makes it a valuable option 
for treating severe GNBs [13] and Enterobacterales in 
the bloodstream [14]. To address the lack of statistical 
evaluations on CAZ–AVI resistance in non-fermentative 
Gram-negative bacilli (NFGNB) and Enterobacterales 
across all infection types, our study aimed to document 
the current resistance landscape by analyzing relevant 
published literature. Our findings contribute to the ongo-
ing efforts to preserve the efficacy of CAZ–AVI combina-
tion therapy and inform treatment decisions.

Methods
Eligibility criteria
For inclusion in the meta-analysis, articles had to meet 
the following eligibility criteria: Firstly, we included 
articles that investigated CAZ–AVI resistance in Gram-
negative isolates. Secondly, we considered articles that 
provided information on sample size. Lastly, articles 
must report resistance proportions in full-text English-
published articles for inclusion. The following were 
excluded: Firstly, articles written in languages other than 
English were not considered. Secondly, we should have 
included case reports, cohort, and pharmacokinetic stud-
ies. Thirdly, articles with duplicate or overlapping data 
were excluded. Lastly, articles that did not state resist-
ance proportions were excluded from our analysis.

Search strategy
We systematically searched Scopus, PubMed, and 
EMBASE databases up to September 16, 2024. The 
search syntax was adapted for each database using rel-
evant keywords and Boolean operators (AND, OR): "cef-
tazidime–avibactam", "Zavicefta", "Avycaz", "resistant", 
"susceptible", "Enterobacterales", "enterobacteriaceae", 
"Escherichia", "Klebsiella", "Enterobacter", "Citrobacter", 
"Proteus", "Serratia", "Salmonella", "Shigella", "Non-
fermenting Gram-negative bacilli", "Pseudomonas", 
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"Acinetobacter", "Stenotrophomonas" in the Title/
Abstract/Keywords fields.

Selection process
After removing duplicates, the systematic search results 
from online databases were imported into EndNote (ver-
sion 20). To minimize bias, two authors (KHA and MZ) 
independently searched for and analyzed relevant pub-
lications. Any discrepancies were resolved by a third 
author (LY). Reference lists of included articles were 
reviewed to gather additional data.

Selection criteria and data extraction
Two reviewers (KHA and MZ) designed a data extrac-
tion form to maintain consistency and accuracy and col-
lected relevant data from eligible studies. The extracted 
data were organized by the first author’s name, publi-
cation year, study areas, infection source, sample size 
of GNB, CAZ–AVI-resistant GNB isolates, and AST 
methodology. Table  1 summarizes the CAZ–AVI sus-
ceptibility breakpoints established by the Clinical and 
Laboratory Standards Institute (CLSI) [15] and the Euro-
pean Committee on Antimicrobial Susceptibility Testing 
(EUCAST) [16] for Enterobacterales and P. aeruginosa. 
Prevalence was calculated as the proportion of CAZ–
AVI-resistant Gram-negative isolates ([resistant isolates / 
total Gram-negative isolates] × 100). Additional reviewers 
(LY) confirmed the data extraction process. Our review 
follows the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines (Sup-
plementary File) [1].

Study risk of bias assessment
Two blinded reviewers independently assessed study 
quality using the Newcastle–Ottawa Scale adapted for 
cross-sectional studies (Supplementary File). The scale 
evaluates three domains: selection, comparability, and 
outcome/exposure, with a maximum score of 8 indicat-
ing high quality [2]. Studies that received a score of ≥ 6 
stars were considered good quality, those with a score 
of 4–5 stars were considered fair, and those with a ≤ 3 
stars were regarded as poor quality. Any disagreements 
in the assessment were discussed and resolved by a third 
reviewer.

Study outcomes
The primary outcome was CAZ–AVI resistance propor-
tion in GNB. Subgroup analyses were performed based 
on publication year (2015–2020, 2021–2024), geographic 
location (continent/country), infection source, GNB 
groups (NFGNB and Enterobacterales), resistance pro-
filing of GNB groups, GNB species, and AST method-
ology. We aimed to identify potential trends and factors 
associated with CAZ–AVI resistance, which can inform 
targeted interventions and public health strategies to 
mitigate the spread of antimicrobial resistance.

Statistics
The relevant data regarding the resistance of GNB to 
CAZ–AVI was included in the metadata. The Meta-prop 
method in the R statistical software R 3.6.0 was utilized 
for all subgroups [17, 18]. The estimate of τ^2, the Q-test 
to assess heterogeneity of effect-size estimates from the 
individual studies [19, 20]. Meta-regression models were 
employed to investigate the variation in CAZ–AVI resist-
ance over time. Egger’s and Begg’s tests were conducted 
to evaluate potential publication bias. The resistance pro-
portions were reported with 95% confidence intervals.

Results
Descriptive statistics
Our systematic search generated 2449 records, managed 
using EndNote version 20. After removing duplicates 
and screening titles and abstracts, 250 full-text articles 
were assessed, leading to the exclusion of 114 articles. 
This multistep process ensured that only relevant, high-
quality studies were included in the final analysis, thus 
enhancing the robustness and reliability of our find-
ings on CAZ–AVI resistance. Ultimately, this systematic 
review and meta-analysis included 136 eligible studies 
[21–156]. The screening and selection process is illus-
trated in the PRISMA flowchart (Fig.  1). The included 
studies originated from 31 countries (China, Turkey, Tai-
wan, United Kingdom, Portugal, United States, Colom-
bia, Czechia, Qatar, Kuwait, India, Italy, Brazil, Greece, 
France, Thailand, Germany, Hungary, Belgium, Spain, 
Nigeria, Egypt, Saudi Arabia, Canada, Poland, Singapore, 
Serbia, Uruguay, Chile, Japan, Bahrain) across four conti-
nents and covered the years 2015 to 2024. The funnel plot 
(Fig. 2) visually represents CAZ–AVI resistance in GNB. 

Table 1  The breakpoints for ceftazidime–avibactam resistance for Enterobacterales and P. aeruginosa [15, 16]

Bacteria CLSI CLSI EUCAST EUCAST
MIC-methods (µg/mL) Disk diffusion (mm) MIC-methods (µg/mL) Disk diffusion (mm)

Enterobacterales  ≤ 8/4  ≥ 21  ≤ 8  ≥ 17

Pseudomonas aeruginosa 16/4  ≤ 20  ≤ 8  ≥ 17
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Table 2 details the proportion of CAZ–AVI resistance in 
GNB and results from subgroup analyses. A summary of 
resistance proportions is provided below: Overall CAZ–
AVI resistance proportion in GNB. Resistance trends by 
publication year, geographic location, infection source, 
and bacterial species. Subgroup analyses based on GNB 
groups, resistance profiling, and AST methodology. Our 
study contributes to a more comprehensive understand-
ing of its global epidemiology by examining these dif-
ferent aspects of CAZ–AVI resistance. It can inform 
targeted strategies for antibiotic stewardship and develop 
novel antimicrobial therapies.

CAZ–AVI resistance in GNB
A total of 507,254 GNB isolates were included in the 
CAZ–AVI resistance analysis. The overall proportion 
of CAZ–AVI resistance was 10.4% (95% CI 9.1–11.8). 
Substantial heterogeneity was observed between the 
studies (I2 = 99.06%, P < 0.001), and significant publi-
cation bias was detected (Egger rank correlation test, 
P < 0.001). The analysis included 135 studies examin-
ing NFGNB (137,052 isolates) and Enterobacterales 
(370,186 isolates), with CAZ–AVI resistance pro-
portions of 25.8% (95% CI 22.2–29.7) and 6.1% (95% 
CI 4.9–7.4), respectively. Substantial heterogeneity 

Fig. 1  Flow Diagram Showing the Study Selection Process
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was found between the studies (I2 > 98%, P < 0.001). 
According to the GNB resistance profiles, the highest 
CAZ–AVI resistance proportion was reported in colis-
tin-resistant isolates (37.1%, 95% CI 14–68) and XDR 
isolates (32.1%, 95% CI 18.5–49.6). This was followed 
by carbapenem-resistant isolates and MDR isolates 
[(25.8%, 95% CI 22.6–29.3) and (13%, 95% CI 9.6, 17.3)] 
(Table 2). A statistically significant disparity was found 
in CAZ–AVI resistance proportions among various 
GNB species (P < 0.001). The lowest resistance propor-
tions were reported in Citrobacter spp. (0.8%, 95% CI 
0.3–2.7), Serratia marcescens (1.1%, 95% CI 0.4–2.7), 
Enterobacter spp. (2.1%, 95% CI 0.5–8.3), and Klebsiella 
oxytoca (2.8%, 95% CI 0.6–12). Conversely, the highest 
resistance proportions were observed in A. baumannii 
(88.6%, 95% CI 66.1–95.7), Pseudomonas spp. (65.7%, 
95% CI 61.4–69.8), P. aeruginosa (22.8%, 95% CI 19.5–
26.4), and Klebsiella spp. (22.5%, 95% CI 7.2–52.2).

CAZ–AVI resistance in GNB over time
A subgroup analysis showed a statistically signifi-
cant difference in CAZ–AVI resistance proportions 
over time. To analyze trends in resistance changes, 
we conducted a subgroup analysis for 2015–2020 and 
2021–2024 (Table  2, Fig.  3). As shown in Table  2, the 
CAZ–AVI resistance proportion significantly increased 
from 5.6% (95% CI 4.1–7.6) of 221278isolates in 2015–
2020 to 13.2% (95% CI 11.4–15.2) of 285,978 GNB iso-
lates in 2021–2024, indicating a > twofold increase in 
frequency (P < 0.001). Meta-regression confirmed that 
the CAZ–AVI resistance proportion increased over 
time (r = 0.212, P < 0.001; Fig. 3).

CAZ–AVI resistance in GNB at different locations
The subgroup analysis revealed significant variations 
in CAZ–AVI resistance proportions across different 
geographic regions (Table  2, Fig.  4). The prevalence of 
CAZ–AVI resistance was as follows: Asia: 19.3% (95% CI 
15.7–24.23.4) among 132,027 GNB isolates, Africa: 13.6% 
(95% CI 5.6–29.2) among 3814 GNB isolates, Europe: 
11% (95% CI 7.8–15.2) among 153,368 GNB isolates, 
South America: 6.1% (95% CI 3.2–11.5) among 25,082 
GNB isolates, North America: 5.3% (95% CI 4.2–6.7) 
among 187,799 GNB isolates. The highest CAZ–AVI 
resistance proportions were reported in Japan (88.9%, 
95% CI 60.4–97.7), Greece (80.7%, 95% CI 1.8–99.9), 
Thailand (58.5%, 95% CI 24.5–86), Uruguay (58%, 95% CI 
41.7–72.7), and Saudi Arabia (50.4%, 95% CI 27.8–72.9). 
Conversely, the lowest rates were observed in Qatar 
(0.9%, 95% CI 0.1–6.2), Portugal (1.7%, 95% CI 24.5–86), 
and Chile (2.4%, 95% CI 0.3–17.9). Out of the 31 report-
ing countries, twelve (Turkey, India, Greece, Thailand, 
Egypt, Germany, Singapore, Serbia, Uruguay, Japan, 
Nigeria, and Saudi Arabia) had resistance proportions 
exceeding 25% of isolates. The differences in CAZ–AVI 
proportions between countries/continents were statisti-
cally significant (Table 2; Fig. 4).

CAZ–AVI resistance in GNB based on infection source
The subgroup analysis demonstrated a statistically sig-
nificant difference in CAZ–AVI resistance proportions 
among various infection sources (respiratory tracts, 
bloodstream, urinary, and mixed) (Table  2). Urinary 
infections exhibited the lowest reported CAZ–AVI 
resistance proportion at 1% (95% CI 0.2–4). Conversely, 
bloodstream infections showed the highest resistance 
proportion, reaching 12.6% (95% CI 10.4–14.6).

CAZ–AVI resistance in GNB based on AST methods
The subgroup analysis showed a statistically significant 
difference in CAZ–AVI resistance proportions among 
various AST methods. Broth microdilution was the most 
commonly used AST method in the included studies. 
The CAZ–AVI resistance proportions were: Disk diffu-
sion agar method: 35.9% (95% CI 22.1–52.5), E-test 31.4% 
(95% CI 23.3–40.8), and Broth microdilution 9.3% (95% 
CI 8.1–10.7).

Discussion
The present systematic review and meta-analysis incor-
porated 135 eligible studies examining 507,254 GNB, 
comprising 137,052 NFGNB and 370,186 Enterobac-
terales isolates. The analysis results provide substan-
tial evidence supporting the hypothesis that CAZ–AVI 
demonstrates superior efficacy against Enterobacterales 

Fig. 2  The funnel plot of the resistance of Gram-negative bacteria 
to CAZ–AVI
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Table 2  Proportion of Ceftazidime–Avibactam resistant in Gram-negative bacteria based on year of study, continents, countries, 
pathogens, infection source, resistance profiling, and AST

Category Subgroup K (n, N) Proportion (%) 95%CI 
(LCI, HCI)

I2 (%) P. value

Overall (37,817, 507,254) 10.4 (9.1, 11.8) 96.06

Year group 2021–2024 (28,876, 285,976) 13.2 (11.4, 15.2) 99.01 p < 0.001

2015–2020 (8941, 221,278) 5.6 (4.1, 7.6) 99.15

Countries Bahrain (34, 152) 22.4 (16.4, 29.7) 0.00 p < 0.001

Belgium (411, 2833) 23.2 (5.3, 61.8) 98.85

Brazil (3, 76) 5.0 (1.1, 20.0) 28.90

Canada (992, 8613) 12.3 (5.9, 23.9) 99.01

Chile (211, 1615) 2.4 (0.3, 17.9) 95.37

China (7027, 88,099) 16.5 (12.3, 21.7) 98.90

Colombia (83, 1317) 3.2 (0.3, 24.8) 97.70

Czechia (68, 2340) 2.6 (0.3, 21.1) 98.26

Egypt (39, 111) 34.9 (24.8, 46.6) 26.85

France (42, 351) 11.6 (4.4, 27.0) 83.91

Germany (287, 938) 29.6 (12.9, 54.3) 95.95

Greece (51, 87) 80.7 (1.8, 99.9) 93.12

Hungary (1146, 22,674) 6.4 (3.2, 12.4) 99.17

India (1571, 6681) 33.7 (20.4, 50.2) 98.89

Italy (865, 10,723) 19.6 (9.2, 37.0) 98.11

Japan (350, 379) 88.9 (60.4, 97.7) 92.91

Kuwait (77, 935) 16.7 (4.9, 43.7) 94.94

Nigeria (47, 175) 30.6 (0.0, 99.9) 97.59

Poland (0, 19) 2.5 (0.2, 29.8) 0.00

Portugal (974, 106,860) 1.7 (0.9, 3.3) 98.47

Qatar (1, 109) 0.9 (0.1, 6.2) 0.00

Saudi Arabia (50, 105) 50.4 (27.8, 72.9) 82.21

Serbia (37, 143) 25.9 (19.4, 33.7) 0.00

Singapore (246, 858) 30.7 (23.7, 38.6) 77.41

Spain (485, 3023) 23.6 (10.9, 43.9) 98.04

Taiwan (6405, 33,370) 9.9 (5.2, 18.1) 99.10

Thailand (2663, 5590) 58.5 (24.5, 86.0) 99.50

Turkey (146, 432) 38.7 (23.6, 56.3) 84.53

United Kingdom (395, 3263) 7.1 (1.7, 25.3) 98.01

United States (11,905, 179,781) 4.9 (3.9, 6.2) 98.96

Uruguay (23, 39) 58.0 (41.7, 72.7) 0.00

Continent Asia (17,727, 132,027) 19.3 (15.7, 23.4) 99.06 p < 0.001

Europe (4829, 153,368) 11.0 (7.8, 15.2) 98.99

North America (12,897, 187,799) 5.3 (4.2, 6.7) 98.97

South America (1252, 25,082) 6.1 (3.2, 11.5) 98.60

Africa (337, 3814) 13.6 (5.6, 29.2) 97.62

multi-continents (775, 5164) 7.8 (2.2, 24.2) 99.42

Infection source MIX (8597, 124,517) 8.1 (6.0, 10.8) 99.14 p < 0.001

Urinary (31, 1806) 1.0 (0.2, 4.0) 61.82

Respiratory (421, 12,540) 1.4 (0.4, 4.6) 97.48

Bloodstream (26,521, 312,965) 12.6 (10.8, 14.6) 99.05

Bacterial groups NFGNB (26,058, 137,052) 25.8 (22.2, 29.7) 99.26 p < 0.001

Enterobacterales (11,746, 370,186) 6.1 (4.9, 7.4) 98.59

Microbial Profiling Acinetobacter baumannii (1086, 1247) 86.8 (66.1, 95.7) 95.61 p < 0.001

Citrobacter freundii (81, 4593) 4.9 (2, 11.7) 90.46
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compared to NFGNB. This finding highlights the impor-
tance of considering bacterial species when assessing the 
potential effectiveness of CAZ–AVI in clinical settings.

MDR and XDR GNB are well-known contributors to 
complex infectious diseases, notably complicated urinary 
tract infections (cUTI). Carbapenem-resistant Entero-
bacterales (CRE) and carbapenem-resistant or MDR/
XDR P. aeruginosa have emerged as significant concerns, 
substantially impacting global morbidity and mortality 
rates. Reported fatality rates associated with these resist-
ant pathogens range from 46 to 60%, emphasizing the 
urgent need for effective treatment options and improved 
antimicrobial stewardship to combat the spread of resist-
ance [3, 157]. According to the Centers for Disease Con-
trol and Prevention (CDC), CRE alone is responsible for 
over 13,000 nosocomial infections and approximately 
1000 deaths annually in the United States. This highlights 
CRE’s significant public health threat, emphasizing the 
importance of effective infection control measures and 
antimicrobial stewardship in healthcare settings [158]. 
The β-lactam antibiotics, including penicillins, cephalo-
sporins, monobactams, and carbapenems, constitute the 
most widely utilized and effective agents against bacterial 

infections [159]. Among these, carbapenems such as imi-
penem, meropenem, ertapenem, and doripenem exhibit 
the broadest spectrum of activity and historically have 
been highly effective against GNBs [160]. However, the 
alarming increase in resistance to carbapenems observed 
recently is likely attributed to their misuse [160]. Notably, 
India has witnessed a significant surge in resistance pro-
portions, ranging from 22.16 to 65% against carbapenem 
antibiotics targeting GNBs [161, 162].

One of the most effective strategies to counter 
β-lactamase-producing GNB involves combining a 
β-lactam antimicrobial agent with a β-lactamase inhibi-
tor [4, 8]. Historically, classical β-lactamase inhibitors 
like clavulanic acid, tazobactam, and sulbactam have 
been utilized; however, their limited activity against most 
classes of β-lactamases has restricted their usage [11]. 
Presently, the novel generations of β-lactamase inhibi-
tors, such as vaborbactam, relebactam, and avibactam 
(AVI), are commonly deployed against various classes of 
β-lactamases [2].

AVI is a synthetic, non-β-lactam β-lactamase inhibi-
tor with no antibiotic activity. It helps protect β-lactam 
agents against β-lactamase-producing bacteria. Key 

Caption; K number of studies, n Number of resistant isolates, N Number of total isolates, LCI 95% Lower Limit Confidence Interval, HCI 95% Higher Limit Confidence 
Interval, P-value of difference between groups. I2: Heterogeneity, AST Antimicrobial susceptibility testing, MDR Multidrug resistance, ESBL Extended spectrum beta-
lactamase, XDR Extensively drug-resistant

Table 2  (continued)

Category Subgroup K (n, N) Proportion (%) 95%CI 
(LCI, HCI)

I2 (%) P. value

Citrobacter spp. (45, 5480) 0.8 (0.3, 2.7) 80.18

Enterobacter cloacae (355, 6389) 14.8 (6.4, 30.5) 97.78

Enterobacter spp. (148, 12,267) 2.1 (0.5, 8.3) 97.37

Escherichia coli (879, 97,625) 4.9 (2.6, 8.8) 98.14

Klebsiella oxytoca (61, 7196) 2.8 (0.6, 12) 95.25

Klebsiella pneumoniae (3904, 92,538) 10.2 (7.5, 13.5) 98.13

Klebsiella spp (187, 403) 22.5 (7.2, 52.2) 83.49

Morganella morganii (2, 103) 3 (0.9, 9.8) 0.00

Proteus mirabilis (21, 4101) 4.5 (0.4, 34.7) 95.35

Pseudomonas aeruginosa (24,705, 135,402) 22.8 (19.5, 26.4) 99.25

Pseudomonas spp. (320, 487) 65.7 (61.4, 69.8) 0.00

Serratia marcescens (21, 3530) 1.1 (0.4, 2.7) 71.31

Providencia stuartii (2, 28) 7.1 (1.8, 24.5) 0.00

Resistance profiling Colistin-resistant (13, 42) 37.1 (14, 68) 61.54 p < 0.001

MDR (4033, 25,042) 13 (9.6, 17.3) 98.40

Carbapenem-resistant (13,808, 45,098) 25.8 (22.6, 29.3) 96.71

ESBL (3557, 39,991) 12.1 (5.9, 23.1) 98.70

XDR (1146, 2426) 32.1 (18.5, 49.6) 97.36

AST Broth microdilution (36,778, 503,796) 9.3 (8.1, 10.7) 99.14 p < 0.001

E-test (785, 2171) 31.4 (23.3, 40.8) 87.32

Disk diffusion (209, 516) 35.9 (22.1, 52.5) 88.91

Agar dilution (0, 695) 0.1 (0, 1.1) 0.00
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advantages include a prolonged half-life, effective 
β-lactamase interaction, and low molecular weight. AVI 
demonstrates significant efficacy against Ambler classes 
A (e.g., ESBLs, KPCs), C (AmpC cephalosporinases), and 
D (OXA-48) β-lactamases but does not affect class B or 
Metallo-β-lactamases [10].

Previous studies have investigated the effectiveness 
of combinations such as imipenem/relebactam, mero-
penem/vaborbactam, and CAZ–AVI, all of which have 
demonstrated favorable results [163, 164]. Among these, 
CAZ–AVI is the first approved combination currently 
in clinical use. Ceftazidime, a bactericidal agent with 
broad-spectrum third-generation cephalosporin proper-
ties, acts by binding to penicillin-binding proteins (PBPs) 
and inhibiting cell wall synthesis [10, 157]. Consequently, 
this combination proves effective against β-lactamases-
producing isolates. Thus, the current meta-analysis 
focuses on the resistance proportion of CAZ–AVI in 
GNB. In this review, 89.6% of GNB isolates were suscep-
tible to CAZ–AVI, while less than 10.4% showed resist-
ance (NFGNB: 25.8% and Enterobacterales: 6.1%).

The strong correlation between colistin-resistant, 
XDR, carbapenem-resistant, and MDR isolates with 
CAZ–AVI resistance underscores the necessity for 
prudent selection of treatment options for multidrug-
resistant infections. This observation emphasizes the 
significance of antimicrobial stewardship programs 
and continuous surveillance to track resistance trends 
and guide treatment guidelines. The underlying mecha-
nisms responsible for this correlation may involve mul-
tiple factors, including [2, 165, 166] horizontal gene 
transfer: the exchange of genetic material between 
bacteria may result in the simultaneous acquisition 
of resistance genes to various antibiotics, including 
CAZ–AVI, leading to the emergence of MDR and XDR 
strains. Co-selection: Exposure to one antibiotic may 
facilitate the development of resistance to other unre-
lated antibiotics, potentially due to cross-resistance 
mechanisms or shared genetic elements. Clonal spread: 
successful MDR and XDR strains can rapidly dis-
seminate within healthcare settings and communities, 
increasing the prevalence of MDR isolates, including 

Fig. 3  Meta-regression analysis for changes in the proportion of CAZ–AVI resistance to gram-negative bacilli isolates over time
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CAZ–AVI-resistant strains. Understanding these 
mechanisms and their contribution to the observed 
correlation is crucial for developing targeted strategies 
to counteract resistance and optimize the efficacy of 
existing and future antibiotics.

However, 12.1% of ESBL-producing GNB isolates 
demonstrated CAZ–AVI resistance. ESBL-producing 
isolates degrade ceftazidime (CAZ) before acting on its 
target, as AVI is ineffective against class B β-lactamases 
or MBLs [167]. AVI cannot protect CAZ from Metallo-
β-lactamases, leading to resistance in MBL-produc-
ing isolates. High resistance proportions are also 
observed in isolates producing ESBLs and carbapen-
emases among non-fermentative bacteria. CAZ–AVI 

resistance in these bacteria primarily stems from muta-
tions within β-lactamase enzymes, with prior studies 
identifying mutations and modifications in the KPC 
gene (a known β-lactamase) as key contributors [168]. 
Reduced drug influx from decreased porin expression 
or mutations and efflux pump overexpression for anti-
biotic efflux contribute to CAZ–AVI resistance in GNB 
[169, 170]. These multifaceted insights underscore the 
diverse challenges encountered in combatting CAZ–
AVI resistance among different strains of GNBs.

On the other hand, having resistance to colistin 
among GNBs can increase the chances of severe infec-
tion and mortality. Thus, other options are required. 
CAZ–AVI is one potential candidate for infections from 

Fig. 4  The proportions of CAZ–AVI resistance of GNB isolates (A Enterobacterales, B Non-fermentative gram-negative bacilli) based on countries
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colistin-resistant isolates, but this study shows that 
approximately one-third of these isolates were resistant 
to CAZ–AVI.

This meta-analysis review indicates that non-fermenter 
bacteria such as Acinetobacter and Pseudomonas exhibit 
the highest resistance proportions. This suggests that 
these species may have intrinsic or acquired mecha-
nisms contributing to CAZ–AVI resistance, which war-
rants further investigation. Over the past two decades, 
A. baumannii has become a significant global concern. 
The World Health Organization (WHO) recognizes 
carbapenem-resistant A. baumannii as a first-priority 
pathogen, emphasizing the urgent need for research and 
development of novel antibiotics to combat this MDR 
bacterium [171]. A. baumannii is notorious for its rapid 
growth of drug resistance, primarily due to its ability to 
modify outer membrane proteins and upregulate the 
expression of efflux pumps. These adaptive traits enable 
the bacterium to withstand a wide range of antibiotics, 
rendering it resistant to multiple drugs and particularly 
challenging to treat [169]. The unique characteristics of 
A. baumannii, such as its adaptability and rapid develop-
ment of drug resistance, highlight the urgency of address-
ing this significant public health threat. Overcoming A. 
baumannii’s resistance mechanisms necessitates explor-
ing and implementing innovative treatment strategies, 
underscoring the critical need for continued research and 
investment in developing effective antimicrobial thera-
pies. Rising CAZ–AVI resistance proportions necessitate 
continuous monitoring, effective antimicrobial steward-
ship, and further research into resistance mechanisms. 
Antibiotic misuse, CAZ–AVI exposure, and bacterial 
population selective pressure contribute to the global 
antimicrobial resistance surge.

Regional resistance variations highlight the need for 
tailored strategies to combat resistance in high-burden 
areas [172]. Regional disparities in CAZ–AVI resistance 
proportions stem from differences in consumption, gov-
ernment regulations, and ESBL prevalence. Tailored 
interventions and region-specific antibiotic stewardship 
programs are vital to combat resistance effectively. Con-
tinuous surveillance and monitoring of resistance trends 
inform public health policies and promote responsible 
antibiotic use, particularly in high-resistance regions 
[172, 173]. On another note, the Middle East, North 
Africa, and Turkey report the highest prevalence of OXA-
48-producing bacteria [174], indicating that mutations in 
this β-lactamase gene contribute to resistance to CAZ–
AVI [175–177]. The multifactorial nature of regional 
resistance patterns emphasizes the necessity of targeted 
interventions and surveillance strategies to address the 
global challenge of antimicrobial resistance effectively. 
By accounting for local factors such as consumption, 

government regulations, and the prevalence of specific 
resistance mechanisms, tailored approaches can help 
curb resistance proportions and ensure the continued 
efficacy of CAZ–AVI and other antibiotics. CAZ–AVI 
is a suitable prescription for cUTIs due to its high sus-
ceptibility rates. meropenem-vaborbactam (MER-VAB) 
effectively targets class A and C β-lactamases, with resist-
ance observed in class D or B enzyme-producing isolates. 
Regional resistance disparities require targeted interven-
tions, antibiotic stewardship, and continuous surveillance 
for effective resistance management [178]. The investiga-
tion of the aztreonam–ceftazidime–avibactam (ATM-
CZA) exhibits intense activity against NDM-producing 
CRE and GES-producing CR-PA resistant to CAZ–AVI. 
It holds promise as a potential treatment option for MDR 
infections but requires further research and clinical trials 
to confirm safety and efficacy in patients [179]. However, 
resistance was noted in strains of P. aeruginosa producing 
NDM or VIM when exposed to ATM-CZA. An intrigu-
ing alternative explored in this context involves the use 
of Metallo-β-lactamase (MBL) inhibitors, such as 4-chlo-
romercuribenzoic acid (CMB), in combination with 
β-lactam antimicrobials, offering the potential for treat-
ing infections caused by CRE and CR-PA isolates [160].

Several limitations need to be discussed in this study. 
First, the significant heterogeneity across studies raises 
concerns about the appropriateness of pooling data for 
meta-analysis. Future research should explore alternative 
methods or stricter inclusion criteria to address this issue. 
Second, the absence of moderator analyses prevents the 
determination of the impact of different variables on the 
mean effect size and direction of differences between 
subgroups. Including such analyses would strengthen the 
validity of the subgroup analyses—the variability in AST 
methods employed across the included studies. Although 
the analysis incorporated all commonly used AST meth-
ods (disc diffusion, MIC-based methods), this variability 
should be considered when interpreting the findings.

Additionally, the study focuses primarily on specific 
regions, limiting the generalizability of the findings. 
Incorporating data from a broader range of geographical 
locations would provide a more comprehensive under-
standing of global resistance patterns. Furthermore, the 
variability in sample sizes across studies may affect the 
reliability and precision of estimated resistance propor-
tion, so future studies should strive for more consistent 
sample sizes. Lastly, the potential impact of publication 
bias on the findings should be assessed and discussed, as 
it can influence the credibility of the conclusions drawn 
from the meta-analysis. By addressing these limitations, 
the authors can provide a more thorough and accurate 
representation of the study’s constraints and guide future 
research in addressing these issues.
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Conclusions
In conclusion, the global prevalence of CAZ–AVI resist-
ance in GNB is a significant public health concern, with 
varying resistance proportions observed among different 
bacterial species. Genetic factors and bacterial adaptive 
mechanisms primarily drive the development of resist-
ance to this crucial antibiotic combination. As we con-
tinue to witness an increase in CAZ–AVI resistance, it 
is essential to implement targeted interventions, such 
as routine surveillance and antimicrobial stewardship 
programs, to preserve the efficacy of this therapeutic 
option. Furthermore, an in-depth understanding of the 
molecular mechanisms underlying resistance can help 
guide the development of novel antimicrobial agents and 
therapeutic strategies. Continuous monitoring of CAZ–
AVI resistance trends will be instrumental in informing 
public health policies and clinical practices to combat the 
spread of multidrug-resistant GNB.
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